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Abstract
Concept bottleneck models (CBMs) are considered partially explainable image recogni-
tion models because they make a concept representation that should be easy for humans
to interpret. However, the explainability of CBMs has come into question. For example,
saliency maps have shown that CBMs do not always focus on the expected parts of an im-
age, and there is a theory that these models may leak uninterpretable information through
their concept bottleneck

In this thesis, I reimplemented the parts of the original Concept Bottleneck paper that fo-
cus on the CUB dataset are reimplemented. I also replicate the saliency-based criticism
of CBMs. Furthermore, I propose a saliency score to measure the explainability of CBMs
based on how well a saliency map attends to annotated coordinates.

I formulate a hypothesis that CBMs, in some cases, first predict the class and then use
the concept to provide a post-hoc explanation of this prediction. I then demonstrate a few
cases that show that CBMs can predict concepts not present in the image supporting this
hypothesis.

I highlight 3 major criticisms of the original Concept Bottleneck paper that may cause this
deceptive explainability:

• The paper uses majority voting on the concept, thus giving false concept labels to
the images that do not contain the same concepts as its archetype.

• The paper uses a RandomResizedCrop preprocessing step that cuts concepts out
of the image but still labels them as present.

• The use of a pre-trained model that is trained with data overlapping with the CUB
dataset.

I show that CBMs trained without majority voting. still produces deceptive explanations but
with much less certainty. Removing majority voting also comes with a big accuracy trade-
off. While there, I state some theoretical arguments against using a pre-trained model
and show that a model trained from scratch does not improve explainability. Not using
RandomResizedCrop does seem to improve explainability, but it also makes models so
unreliable that it is hard to conclude anything.

However, all models trained in this thesis still display signs of deceptive explainability,
meaning that they cannot be trusted to predict concepts faithfully and can hide harmful
bias in their concept predictions.
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1 Introduction

This chapter introduces the basic ideas behind Concept Bottleneck Models (CBMs) and
why they may not be explainable. It also defines the scope of the project and introduces
what other people are doing with CBMs.

CBMs were introduced by Koh et al. (2020). The core idea behind a concept bottleneck
model is that it consists of two classifiers: the first classifier takes an input x and predicts
a series of concepts c, and the second classifier then uses the concepts to predict the
class label y.

While the original paper (Koh et al., 2020) contains experiments on both the Osteoarthritis
Initiative (OAI) dataset (Nevitt et al.) and the Caltech US Birds (CUB) dataset (Wah et al.,
2011), the main focus of this thesis is on the CUB dataset. This is because the CUB data
set is the most replicated part of the paper, but it is also the part where I see the biggest
reason to criticize the paper. So the main predictions challenge in this thesis will be to
use Inception-V3 (Szegedy et al., 2015) a deep convolutional neural network (CNN) to
predict concepts c such as has bill shape::all-purpose, has size::medium (9 - 16 in) or has
forehead color::brown. A full list of all concepts can be found in appendix A. Based on
c, a perceptron classifier will be used to classify a bird label y such as Mallard, Orange
Crowned Warbler or Painted Bunting, with a total of 200 different species of birds.

In theory, CBMswould be partially explainable since themodel explains what concepts are
part of the final prediction: for example, amodel may tell us that a bird is amallard because
it has a green head, a Spartial bill shape, and a ducklike shape. Another key benefit of
CBMs is that an operator can intervene on concepts during test time. For example, if
the concept wing color is predicted to be black but the operator believes it to be brown,
they can change a wrongly predicted concept to a correct one and thereby improve the
accuracy of the final model.

Figure 1.1: Figure by Koh et al. (2020): Illustration of how a concept bottleneck model
classifies a bird by first classifying concepts and then use the concepts to predict what
class the bird belongs to.
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Figure 1.2: Figure by Koh et al. (2020) illustrating how intervention on concepts can pro-
vide better classification

While this kind of explainability seems intuitive, it still leaves open the problem that the
model predicting the concepts is a black box. This means that we cannot know why the
model thinks the wing is black or that the head is orange. Thus, in this thesis, I will explore
the accuracy of the black box prediction and some examples of pitfalls that will cause the
model to predict the wrong concepts in order to predict the correct bird, thus giving a
deceptive explanation.

1.1 Motivation
The original paper (Koh et al., 2020) makes very few assumptions of concept bottleneck
models (CBMs) being explainable: they only claim that the class predicting classifier is
more explainable due to counterfactual explainability of performing interventions on con-
cepts.
For example, if an operator changes the color, they can observe how this changes the
type of bird the model predicts is in the image.
Despite the modest claims of the original paper, there seems to be a wide consensus in
the community that CBMs are explainable. Therefore, this thesis aims to explore some
of the fundamental assumptions made by Koh et al. (2020) to figure out how explainable
CBMs are.

By pointing out potential pitfalls in the fundamentals of CBMs, we can prevent those mis-
takes from being replicated and, hopefully, develop CBMs that provide truthful explain-
ability.

1.2 Hypothesis
The main hypothesis in this thesis is that deep convolutional neural networks (CNN) used
to predict the concepts of Concept Bottleneck Models (CBMs) do not learn a latent rep-
resentation of the concept. Instead, the CNN learns a latent representation of the class,
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which is thenmapped to the concept layer, as illustrated in Figure 1.3. If this is true, CBMs’
explainability would be deceptive since they do not tell us what concepts are present in the
input. Instead, they tell us the concept needed to justify a black box model’s prediction.

Figure 1.3

An example of hypothesis 1 being true is that if the CNN tries to predict whether or not the
head is blue. Instead of looking at just the head, it will look at the entire bird to see if the
bird is a type of bird with a blue head. This will happen even if the head is not visible or a
minority of this class of birds have a different color head. If hypothesis 0 is true, the model
would only look at the head and tell what color the head actually is; this would mean that if
the head is not visible or if the head is another color, the head will not be predicted as blue.

1.3 Scope
The primary scope of this thesis is the implementation of the original Concept bottleneck
paper Koh et al. (2020) to investigate the explainability of CBMs with respect to the stated
hypothesis. I have reimplemented the part of the paper that focuses on the CUB-200-2011
dataset Wah et al. (2011).

While reimplementing the code, I found 3 major criticisms of Koh et al. methods that may
cause the model to predict the class instead of concepts.

1.3.1 Majority voting

The criticism that led me to start this project was the use of majority voting in determining
the concepts. Majority voting means that the concept labels were denoised by taking
the setting of all labels of a concept to the majority of the class. Figure 1.4 illustrates an
example of how majority voting is changing the concept labels to something not true. The
details of how majority voting is performed can be seen in section 3.1.3.

Concept Bottleneck Models 3



(a) Painted Bunting male. (b) Painted Bunting female.

Figure 1.4: Painted Bunting: Male on the left and female on the right. Without majority
voting, the crown and forehead of the female are labeled yellow; after majority voting, they
are labeled blue.

1.3.2 Random Cropping
The Inception network used by Koh et al. is trained by using RandomResizedCrop (Py-
Torch Team, 2017) when training the model; this means that in many cases, the model is
trained to recognize the concept that is not present in the part of the picture it is trained on.
Cropping and preprocessing steps are described in more detail in section 3.1.4. examples
of RandomResizedCrop can be seen in figure 1.5.

Figure 1.5: 4 samples of the Painted Bunting in figure 1.4a after RandomResizedCrop
(PyTorch Team, 2017), all images would have the same concept label even if the concept
is cropped out of the image

1.3.3 Data overlap
The CUB dataset overlaps with the ImageNet dataset (Wah et al., 2011). This means that
when using a pretraining Inception network, the model is already trained to recognize the
bird, and thus, it is theoretically easier for the model to map a latent layer already trained
for bird classification to a concept layer than it is to learn the concept layer. Another prob-
lem is that there is a small overlap between the CUB dataset test set and the ImageNet
training set. A blog post by Guo claims that 23 out of 5794 images in the CUB test set are
also in the ImageNet training set, meaning that models using a pre-trained network have
been trained on a tiny bit of their test set.

1.3.4 Objective explainability.
A problem when evaluating concept bottleneck models is the lack of a method to quantify
how explainable in model is. This means that when dealing with a model with an accuracy
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explainability tradeoff like CBMs, people are incentivized to maximize accuracy at the
expense of explainability. I try to solve this by introducing a saliency score that, based
on saliency maps, computes an objective score for how much attention the model pays
to the part of the image it is supposed to attend. The details of how the saliency score is
calculated can be seen in section 3.6.

1.4 Related work
1.4.1 Works on DTU
Part of the motivation for creating a better understanding of concept bottleneck models
(CBMs) is that they are a key part of active DTU research into explainable fetal ultrasound
quality assessment (Lin et al., 2022). This paper seems to avoid the problem of predicting
class before concept by introducing a perceiving concept bottleneck model (PCBM) that
first identifies a concept’s location and produces a mask that makes sure the model only
looks at the concept before predicting it, as seen in figure 1.6. However, they also test a
CBM that shows that it classifies a concept despite this concept being manipulated out,
which is a similar phenomenon to what I observe in section 5.3

Figure 1.6: Figure by Lin et al. (2022) top picture shows a PCBM with the observer mask-
ing out concepts before the conceiver predicts it. Themiddle picture shows an input image
where the input image has beenmanipulated to remove the umbilical vein. Themask from
the umbilical vein is gone, and the concept related to the umbilical vein is predicted by the
PCBM to be close to 0. The bottom image shows a classical CBM on the same manipu-
lated image; the CBM predicts the umbilical vein to be present despite the manipulation,
leading to a misclassification.

1.4.2 Concept bottlenecks on majority voted CUB dataset
The method used by Koh et al. (2020) has been used by many other papers to extend the
work of concept bottleneck models. This means that criticism of the methods identified in
this thesis also is to be found in those studies.
Barbiero et al. (2022) makes a model that can explain the classification in boolean logic.
While they do use a ResNet10 is trained from scratch, they also use majority voting on
the concept dataset. Ghosh et al. (2023) expand on this method by adding multiple logic-
based experts using the same dataset as Barbiero et al. (2022). They only use 108 con-
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Figure 1.7: Figure by Shin et al. (2023) showing interventions on CBMs trained with ma-
jority voting (MVO) and without majority voting (MV X): What is worth noticing is that when
intervening on concepts without majority voting, the error goes up.

cepts instead of the 112 used by Koh et al. (2020). This is most likely due to the majority
voting and filtering being non-deterministic. I explore this problem in more detail in Sec-
tion 3.1.1. Examples of problematic explainability from Ghosh et al. (2023) are provided
in Appendix A.2.”
Sheth and Kahou (2023) introduces new ways of training CBMs by improving the loss
function and testing their results on several datasets. This includes CUB, where they do
a majority voting but not the following filtering step that reduces the number of concepts
as described in 3.1.3.
Shin et al. (2023) investigates new ways to intervene on concepts. Most of their paper are
based on a majority-voted dataset. They do one small experiment at the bottom of their
paper, where they train a concept bottleneck model without majority voting. The results
of this experiment can be seen in figure 1.7:

Havasi et al. (2022b) proposes CBM that doesn’t have leakage in the concept bottleneck
layer as described in 2.3; they also use a majority-voted dataset.

1.5 Chat-GPT generated concepts
Instead of relying on human-annotated concepts Oikarinen et al. (2023) and Yang et al.
(2023) use Chat-GPT3 to generate concept labels. While this avoids problems of major-
ity voting, it doesn’t necessarily make the concepts more explainable. Examples of the
problematic explainability of this method can be found in the appendix A.2.
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Figure 1.8: Figure by Margeloiu et al. (2021) illustrating three methods for calculating
saliency maps for leg color concepts. Note that none of the maps focus on the legs.

1.6 Saliency maps for criticisms of concept bottleneck
models

A major criticism of concept bottleneck models comes in the form of saliency maps show-
ing that CBMs do not attend to the part of the image they are supposed to, as demon-
strated by Margeloiu et al. (2021) in figure 1.8. A problem with saliency maps is that they
only provide a qualitative description of a single image, not an objective number for the
entire test set. however, because the CUB dataset contains coordinates for some con-
cepts, it is possible to create an objective score based on comparing saliency maps with
the actual locations of a concept. Huang et al. (2024) introduce a saliency score based
on drawing a box around the most salient pixel. They then make a binary value based on
whether the annotated coordinate is inside the box or not. How this is done is illustrated
in figure 1.9: I introduce my own way of calculating a saliency score in section 3.6.

1.7 Toy and Simulated Datasets for Critiquing Concept
Bottleneck Models

The paper Promises and Pitfalls of Black-Box Concept Learning Models by Mahinpei et al.
(2021) contains several examples of simulated datasets and toy datasets to show how
the concept layer is carrying more information than they are supposed to, also called
leakage, and explores in detail in section 2.3. Shin et al. (2023) also presents a way to
simulate a dataset for concept bottleneck models in order to investigate what happens
when concepts become noisy and what happens if the dataset has a concept that is not
used for training.

Concept Bottleneck Models 7



Figure 1.9: Figure by Huang et al. (2024): illustrating how they calculate their score. The
yellow dot is the annotated coordinate, and the yellow box is centered around the most
salient pixel. If the coordinate is inside the box, the score for that concept is 1. Else, it is
0.
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2 Theory
This section seeks to give the reader a clear understanding of how concept bottleneck
models work, and how they are trained. I also discuss the theory behind the Inception
model used in this thesis, and how saliency maps can be used to critique explainable
image models.

2.1 Concept bottleneck models
A concept bottleneck model can be described as a combination of two models that each
perform their own prediction task. The first model g() takes an input from the dataset
x ∈ Rd and transforms it to the concept space c ∈ Rk such that ĉ = g(x). The second
model f() uses ĉ to predict ŷ, such that ŷ = f(ĉ). No matter how they were trained, the
final concept bottleneck model would, at test time, compute:

ĉ = σ(g(x))

ŷ = f(ĉ)
(2.1)

Where σ can represent different functions, this function can either be a stepper function
or a sigmoid function, but it can also be excluded. A theoretical argument for why these
functions should be included can be found in section 2.3 a practical argument, as well as
the implementation, can be found in section 3.2.2. In the original paper(Koh et al., 2020),
this function is not used except for one small experiment that uses a sigmoid function all
other CBMs in the original paper use ŷ = f((ĉ))

2.1.1 Different types of concept bottleneck models.
Koh et al. (2020) introduce 4 ways of training a concept bottleneck model: Joint, Sequen-
tial, Independent, and Standard.
All methods aim to learn the optimal f̂() and ĝ() by minimizing a loss from the concepts
and a loss from the class prediction.
The class loss can be described as LY and could be any loss function for a multiclass
prediction.
The Concept loss can be described as LCj where j is the index of the concept such that
each concept has its own loss function. This is because each concept can be treated
as a binary classification independent of all other concepts. This also means that each
concept can have its loss weighted depending on how important it is. Weighing of the
concept loss is explored further in section 3.3.1.
2.1.1.1 Independent
The independent bottleneck model is based on training f() and g() independent of each
other:

The concept predicting model g() is trained by optimising equation 2.2

ĝ = argmin
g

∑
i,j

LCj

(
gj(x

(i)); c
(i)
j

)
(2.2)

The class predicting model f() is trained by optimizing equation 2.2 Note that the model
is trained on the true concept provided by the dataset, and therefore this model can be
trained independently of f()

f̂ = argmin
f

∑
i

LY

(
f(c(i)); y(i)

)
(2.3)

Concept Bottleneck Models 9



2.1.1.2 Sequential
In the sequential model, the concept predicting classifier is trained in the same way as in
independent training as described in equation 2.2, the learned Ĝ is then according to Koh
et al. (2020) used to train the class predicting model by optimizing

f̂ = argmin
f

∑
i

LY

(
f
(
ĝ(x(i))

)
; y(i)

)
(2.4)

In practice, both in my code and the original code, this is done by first creating a new
concept dataset ĉ = ĝ(x) and then training by optimizing equation 2.5:

ĝ = argmin
g

∑
i,j

LCj

(
gj(x

(i)); ĉ
(i)
j

)
(2.5)

The difference between equation 2.4 and 2.5 illustrate that the only difference between
the independent training and sequential training is that the independent concept classifier
is training on the true concepts c while the sequential is trained on a generated concepts
ĉ.
2.1.1.3 Joint
The joint models train both f() and g() by generating a loss function for the entire concept
bottleneck model as:

f̂ , ĝ = argmin
f,g

∑
i

LY

(
f(g(x(i)); y(i)

)
+
∑
j

λLCj

(
g(x(i)); c(i)

) (2.6)

Where λ > 0 is a hyperparameter. Koh et al. (2020) finds lambda by making a hyper
parameter opitimisation, while this method can find the best value for λ it is also expensive.
I, therefore, suggest a theoretical argument for λ = 1/J where J is the number of concepts.
The argument is that without any other prior assumptions, we should expect the loss from
classifying all the concepts wrong to be the same as the loss from classifying the class
wrong. The loss function for a single datapoint in a joint bottleneck model can be written
as:

Ljoint = LY (ŷ; y) + λ
J∑
j

LCj (ĉj ; cj) (2.7)

So if LY () and LCj () are both loss functions with the same loss for a misclassification
such that LY (1, 0) = LC(1, 0), then in order to for them contribute equal to the final loss
we can write:

λ
J∑
j

LCj (1; 0) = LY (1; 0) (2.8)

λ · J · LCj (1; 0) = LY (1; 0) (2.9)

λ =
LY (1; 0)

J · LCj (1; 0)
(2.10)

λ = �����LCj (1, 0)

J ·�����LCj (1, 0)
(2.11)

λ =
1

J
(2.12)
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Note that this value λ should be used if class and concept prediction is weighted equally;
in theory, if λ < 1

J the model would achieve better accuracy on the final class prediction
but may allow more leakage thus being less explainable.

2.2 Standard
Standard training ignores the concept and only trains on the class label.

f̂ , ĝ = argmin
f,g

∑
i

LY

(
f
(
g
(
x(i)

))
; y(i)

)
(2.13)

The standard model is not a concept bottleneck but uses the same structure; thus, it is a
useful baseline.

2.3 leakage
Leakage refers to a phenomenon where the learned concept representations encode in-
formation unrelated to the concept. For example, consider a scenario where a model
predicts the concept has bill shape hooked seabird. If ĉ = g(x) also encodes informa-
tion about the presence of water in the image into ĉ, the final classifier might use that
water-related information to associate the concept with birds that live near water—even
if such information is irrelevant or misleading. This may lead to wrong predictions, but
even worse, this model would not be explainable since we do not know if the concept
has bill shape hooked seabird predicts the shape of the bill or just the presence of water.
Since the model uses a soft concept, the information about water can be encoded by just
changing a lot of concepts a little bit.

The theory of leakage was introduced by Mahinpei et al. (2021), who shows that leakage
occurs in concept bottleneck models for both sequential training and joint training. They
also show that concept bottleneck models can use leakage to predict the correct class
even when concept labels are randomly generated. Havasi et al. (2022a) expands on the
theory of leakage and defines the Markovian assumption as the label y being conditionally
independent of the input x given the concepts c (y ⊥ x | c). Leakage then occurs when
the Markovian assumption is not fulfilled, and x is carrying information not present in c. If
the Markovian assumption is not fulfilled, the model could try to include more information
into c than what can be supported by the true concepts in order to improve accuracy.

Both Mahinpei et al. (2021) and Havasi et al. (2022a) suggest addressing leakage by
using hard concepts, meaning that each concept is predicted as either true or false prior
to training f(). In section 3.2, I discuss the possibility of using hard concepts in section
3.2.2.

While leakage is a valid criticism of CBMs, my criticism of using majority-voted concepts
goes beyond leakage, since using majority voting allows c to contain all the information
needed to predict y (this is shown in section 4.1.1). This means that the Markovian as-
sumption is fulfilled for the majority-voted dataset. The downside, however, is that in order
for y to be predicted correctly, ĉ must contain the majority-voted concept even if they are
not present in x.

2.4 Inception-V3 architecture
The Convolutional Neural Network (CNN) used in this thesis is the Inception-V3 model
(Szegedy et al., 2015). The key innovation in the Inception models compared to other
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(a) Example of how two 3x3 convolutions can
work as a 5x5 convelution

(b) An inception module replacing a traditional
CNN layer

Figure 2.1: Two example from the Inception V3 paper Szegedy et al. (2015) on how an
Inception network differentiates its architecture from a standard CNN

CNNs is that some convolutional layers are split up into modules that perform multiple
smaller convolutions. Some convolutions are done in parallel to get the advantages pro-
vided by different-size convolutional filters and then concatenated at the end of themodule
as seen in figure 2.1b. Inside a module, they also stack multiple smaller convolutions in
order to stack multiple smaller convolutions to approximate a larger convolution: an ex-
ample theorized by Szegedy et al. (2015) is that two 3x3 convolutions could replace a 5x5
convolution with minimal performance loss, but using less computation power as seen in
figure 2.1a. The inception network also uses an auxiliary that trains an auxiliary classifier
on a layer midway through the model. This makes it possible to construct an auxiliary loss
function that can give a stronger gradient to the early layers of the network.
A possible downside of using auxiliary loss is that when training Joint concept bottleneck
models, a gradient for the final class bypasses the concept bottleneck layer, further in-
centivizing the model to learn class representations instead of concept representations.

2.5 Saliency maps
Saliency maps are a method to interpret the prediction of a neural net qualitatively. The
saliency maps for convolutional neural nets were introduced by Simonyan et al. (2014)
as a visual illustration of what part of images is most salient for making the prediction of
a certain class.

Saliency maps are based on calculating the gradient with respect to a target class; this
gives a tensor with the same dimensions as the input. By taking the maximum absolute
gradient value across all color channels for each pixel, a map highlighting the most influ-
ential areas of the image can be generated. Thus, the saliency maps tell us which pixel
would cause the biggest change in the final prediction if that pixel were changed just a
little bit.

I used this standard type of silencemap to calculate the saliency score described in section
3.6
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2.5.1 noisetunnel
Saliency maps can be very noisy due to individual pixels having a relatively strong influ-
ence on the final prediction; thus Smilkov et al. (2017) introduce SmoothGrad or noise-
tunneling, whereby adding a small noise to the image and sample multiple saliency maps
can create an image more interpretable to the human eye.

In this thesis, I have used noise tunneling for the saliency maps shown; the plots are all
made with a standard deviation of 0.2 and sampled 50 times.
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3 Method
In this chapter, I explain some of themost fundamental functions for how I implemented the
paper and the new methods I have developed to test concept bottleneck models (CBMs).
Most of my time in this project has been spent replicating the work of Koh et al. (2020):
My code was originally based on the code provided with the paper 1

To improve code quality and really understand the code, I have been rewriting almost all
functions to the point where very little remains of the original code base.
All the code used in this thesis can be found on GitHub:
https://github.com/AndreasRaaskov/concept_bottleneck

3.1 Datasets
The Caltech UCSD birds-200-2011 dataset Wah et al. (2011) consists of 11788 images
of 200 different bird species, that is the clas label y. Each image is annotated with 312
different attributes. To maintain consistency, I will, in this thesis, refer to those 312 at-
tributes as concepts or c. All concepts were annotated using Amazon Mechanical Turk (A
crowd-sourced service). A full list of all concepts can be found in appendix A

The dataset also contained the location of each part, which was annotated as the average
of 5 Turck clicking on the same image.

3.1.1 Train val split of CUB dataset
The train validation split was defined by the CUB in the dataset (Wah et al., 2011). Later
Koh et al. (2020)created a test set by splitting the training set using a random seed. This
test set is used to find the best hyperparameters, and I refer to it for a few mine experi-
ments in this chapter to argue for my hyperparameter selection

Since the majority voting and filtering process described in section 3.1.3 is only performed
on the training set, this split made the concepts annotation and a number of majority-voted
concepts partially random. This happens because removing random data points changes
the distribution of concepts a little bit, leading to some concepts being the majority in some
splits and not in others.

Thus, in order to get the same train test split as Koh et al. (2020), I had to download their
dataset2 and then extract the train test split from it.

I then rewrote the data processing function to take in the train test split and provide the
same split as used for the original experiments.

3.1.2 Renaming of attributes
The terms concepts and attributes have been used interchangeably to describe the clas-
sification of the concept layer, also referred to as c. In the original dataset and code, the
word attributes is used; however, concepts are used in the paper. In this thesis and my
code, I have made a commitment to the name Concepts and have used this name both
in the code and the report.

1The code from the original paper can be found on: https://github.com/yewsiang/ConceptBottleneck
2The dataset made by Koh et al. (2020) can be found on https://worksheets.codalab.org/worksheets/

0x362911581fcd4e048ddfd84f47203fd2
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3.1.3 Majority voting and filtering
The use of majority voting was my first main critique of Koh et al. implementations of CBM
in the CUB dataset.

Majority voting is based on counting the number of concepts labeled true or false for
each type of concept for a class; each type will of concept would then be changed to the
majority for this type of bird such that all birds of this type would have the same set of
concepts. This also means that all birds of the same class will have the same concept
labels independent of what they look like or if the concept is present is visible in the picture.

In the CUB dataset (Wah et al., 2011), annotators were asked to state how certain they
were in their prediction; this included stating if a concept is visible. When majority voting is
performed, only concepts that are visible are counted. In the new majority-voted dataset,
all concept labels would then be set to the majority label.

For example, if a class of birds has yellow legs that are true in 40% of the pictures, yellow
legs are false in 60% of the pictures, but 30% of the legs are false because the legs are
not visible. All birds in this class would be annotated to have yellow legs no matter what
their legs look like or if the legs are visible.

Another example is that if 30% of a class has a size medium, 40% has a size small, and
30% has a size very small, all have size labels would be false because none of them has
over 50%.

The filter step is meant to remove sparse concepts; a threshold is selected; Koh et al.
(2020) use a threshold of 10. If a concept is not true for more than the threshold classes,
then the concept is removed.

For example, if less than 10 types of birds have a green head after majority voting, the
concept of green head will be removed.

This means that the number of concepts is reduced from 312 to 112 when majority voting
and filtering are applied.

When I refer to models with majority voting, I mean models that went through those two
steps. When I refer to models without majority voting, I mean models that did not go
through those steps and thus still predicted all 312 concepts.

3.1.4 Cropping of images
The second critique I had of Koh et al. is the use of the RandomResizeCrop function
PyTorch Team (2017) in the data preprocessing step that crops out a random portion of
the image and resizes it to the 299 x 299 dimension that the Inception-V3 model takes as
input. This method was also suggested by Szegedy et al. (2015) and Cui et al. (2018) as
the correct for retraining inception networks.

For RandomResizedCrop, I use the standard setting of the PyTorch implementations Py-
Torch Team (2017), meaning that up to 92% of the image can be removed before the
picture is interpolated to 299 x 299 dimensions.

However, this method should, in theory, not be suitable for concept bottleneck models
since it would cut out concepts but still label them as present. An example of this can
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be seen in figure 3.1d, where the random resized crop removes concepts from the image
but still labels them as true. Thus, I ran an experiment where I used a torch to resize the
image to 299 x 299 without cropping anything. The result of the can be seen in section
4.3.
For the test and validation set, images were center-cropped to 299 x 299 since this is the
method to evaluate the models used by Koh et al.. An example of center cropping can
be seen in figure 3.1c. Note that concepts can also be cropped off when using center
cropping, which I explore further in section 5.3

(a) Original Image (b) Resized Image
(c) Center-Cropped Im-
age

(d) 4 examples Randomly Resized crop done by torch Image

Figure 3.1: Demonstration of different image transformation techniques used in this thesis

3.1.5 Other data preprocessing
A few other pre-processing steps were used on the training set for data augmentation fol-
lowing the Koh et al. (2020) implementation; this includes Color Jitter, Random Horizontal
Flip, and Normalization to mean 0.5 and standard deviation 2.

3.2 Models Architecture
In this section, I describe my implementation of the concept bottleneck models; since this
is a practical implementation, I will change the notation from the abstract math notation in
the theory section 2.1 to the model names used in the code. So what the theory section
refers to as the ĉ = g(x) will forward be referred to as the X-to-C model, and ŷ = f(c) will
forward be referred to as the C to Y model.

3.2.0.1 X to C model
The X to C model could, in theory, be any CNN architecture, but for the CUB dataset Koh
et al. (2020) used the Inception-V3 architecture as described by Szegedy et al. (2015)
therefore, I also use a standard inception model from pytorch (PyTorch Team, 2015) with
the only chance that the output layer is reinitialized to fit the output dimensions of the
number.
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3.2.0.2 C to Y model
The C to Y model is a multi-class perceptron (single-layer neural network).

While concept bottleneck models can have more complicated C to Y models, the linear
perceptron offers extra explainability since all concepts map directly to a class. And thus,
we can inspect the weights.
The C to Y model can also be used as a baseline when tested on the true concepts. The
idea is to test the predictive power of the annotated concepts to determine whether they
are meaningful for the final classification.

3.2.0.3 X to Y model
The X to Y model is a standard inception like the X to C model, with the only difference
being that the output layer is 200, matching the number of classes.
Since the standard model doesn’t use concepts, it can be considered a baseline telling
us how much accuracy we should expect from a model without a concept bottleneck.

3.2.1 Pretraining
My criticism of the Koh et al. (2020) is that they use the pre-trained weight from python
PyTorch Team (2015) pre-train on the image net. I do the same in all my models but run
one experiment on weight randomly initialized.

3.2.2 Augment against sigmoid and for hard concepts
I apply a sigmoid function to the output of the X-to-C model before passing it to the C-to-Y
model, so that each concept can be interpreted as a probability. For joint models, this
means that the model applies a sigmoid function between the final layer and the layer
before.

For sequential and independent models, I create a new dataset using the X to C model
and then apply an activation function before using the data to train the C to Y model. A
minor experiment was run to determine the effect of applying sigmoid between the X to
C model and the C to Y model compared to a model in which the raw logits of the X to C
model were fed directly to the C to Y model.

As seen in the table 3.1 and 3.2, the model with sigmoid is slightly better than the raw
logits. Thus, I chose to keep sigmoid between the two models. However, it is worth
noticing that Koh et al. (2020) finds that the raw logits give better accuracy, and thus they
use raw logits; they also show that while using logits gives better performance, it makes it
harder to intervene on concepts, which is one of the core features of a concept bottleneck
model.

Model logits Sigmoid
With majority voting 0.743 0.725

Without majority voting 0.688 0.687
Table 3.1: Model accuracy on class prediction on validation set for joint models

The hard function refer in table 3.2 refers to hard concepts, which are binary concepts
determined by predicting the concept to True or False and then returning 0 or 1 instead
of a sigmoid probability or logits. The fact that this is performing well may be relevant for
experiments trying to limit leakage, as discussed in section 2.3.
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Model logits Sigmoid Hard
With majority voting 0.778 0.798 0.813

Without majority voting 0.217 0.274 0.251
Table 3.2: Model accuracy on class prediction on the test set for sequential models

3.3 Hyperparameter
Finding the correct hyperparameters has been quite challenging since the Koh et al.
(2020) had done a hyperparameter search for all their models. However, I have more
models and fewer computing resources; therefore, I only ran a few experiments until I
found a hyperparameter configuration that seemed to work for most models. I then ran all
models with the same hyperparameters except for λ in order to ensure a fair comparison.
I ended up with the following hyperparameters: A batch size of 32 with an Adam optimizer
(Kingma and Ba, 2017) and an initial learning rate of 0.001 with a decay of 0.94 every 20
epochs.

For joint models I use the λ value of λ = 1/J as descubed in section the theory section 2.1.

For the J = 112 concept that is left after majority voting and filtering, this means that
λ = 1/112 ≈ 0.008928, which corresponds fine with Koh et al. (2020) concluding that the
optimal λ = 0.01. Without majority voting, there are J = 312 original concepts; thus, the
optimal value should be λ = 1/312 ≈ 0.003205.

3.3.1 Concepts weighting
The concept dataset is quite sparse, with most labels being False.Koh et al. (2020) tries
to deal with this problem by introducing a class imbalance weight that is calculated as:

imbalance ratio =
total

positive
− 1

This formulation seemed a bit strange to me at first, but it is equal to the official formulation
in ?, which is:

imbalance ratio =
negative

positive

prof

total

positive
− 1 =

positive+ negative

positive
− 1 =

negative

positive
+

positive

positive
− 1 =

negative

positive

The imbalance is given to the Binary cross entropy loss function. However, upon care-
fully reading the documentation, I discovered that the imbalance should be given as the
argument pos weight where the original code uses weight

A short experiment on the test set that can be seen in the table, however, revealed that
doing concept weighting increases the accuracy of the majority-voted Sequential model
while making the non-majority-voted sequential model a lot worse. This meant that I chose
not to use concept weighting in any of the models presented in the results.
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Model Whith weighting Without weighting
Joint With majority voting 0.74 0.72

Sequential with majority voting 0.99 0.8
Joint Without majority voting 0.45 0.68

Sequential Without majority voting 0.05 0.2
Table 3.3: Model accuracy on class prediction on validation set for joint models

3.4 Training of the models
Training of the models follows the theory in section 3.1.1. For joint models, I use a Binary
cross-entropy loss LCj for concepts and a cross-entropy loss for the class predictions LY .
The final loss is then calculated as:

Ljoint = LY + λ ·
∑
j

LCj

Since the Inception-V3 produces an auxiliary output, it also needs an auxiliary loss that is
calculated the same way as the main loss.

For the sequential trained models, the X to C classifier is first trained by minimizing LCj .
Once the classifier is trained, it is used to make a new dataset of concept ĉ. The new
dataset is then used to train a standard scikit-learn perceptron Pedregosa et al. (2011) as
the C to Y model.

For independent models, a standard perceptron is also trained, but on the true concepts
c, the X to C classifier is the same as that for the sequential model and is reused.

The standard model is trained to minimize Ly, in the same way, you would train any
convolutional neural network.
All models were first trained on the trainset and evaluated on the test set, then the best
epoche of based on the test was chosen, and the final models that were reported in the
chapter 4 were trained by combining both the train and the test set and training until the
best epoch in order to replicate the method used by Koh et al. (2020).

First, an experiment comparing majority-voted and non-majority-voted models was done,
and then an experiment without pretraining and using a resize preprocessing step instead
of RandomReziseCrop was done. The experiments without pretraining and resizing were
also done on a dataset without majority voting.

3.5 Evaluation Criteria
The original paper Koh et al. (2020) only uses prediction error to evaluate both their con-
cept and class; I made the choice to report accuracy instead because I find it more intuitive.
For class predictions, I chose to include the accuracy pf top 5 predictions (are the correct
class in the 5 classes with highest certainty) to see if the models can guess the type of
birds. For example a model could have a very hard time differentiate an American crow
from a fish crow, however it should idealy have all types of crows and Ravens in its top 5
predictions.
For concept prediction, most concepts appear very sparsely, meaning a model can get
very good accuracy by just guessing all concepts as false. To combat this, I use precision,
recall, and F1 scores to evaluate the models concept-predicting abilities. I also evaluate
all models on both majority-voted concepts and non-majority-voted concepts.
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(a) Training loss Ljoint = LY · λ ·
∑

j LCj
for different joint models.

(b) Test loss Ljoint = LY · λ ·
∑

j LCj
for different joint models.

Figure 3.2: Training and test loss for joint models, note that majority voted model(red)
trained more stable and almost doesn’t overfit. The model trained using resizes and with-
out majority voting(Brown) seems to memorize the training set without generalizing. The
models trained without majority voting(Green) seems to overfit a little bit. The model
trained without majority voting and without using a pre-trained model(blue) takes longer
to learn but almost catch up to the pre-trained model.
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(a) Training loss
∑

j LCj for X to C models used for Sequential and Independent training.

(b) Test loss
∑

j LCj
for X to Cmodels used for Sequential and Independent training. The majority-

voted model (Gray) seems to be training quite well. The models without majority voting seem to
overfit a lot, especially the model trained with Resized preprocessing (Brown), which seems to
just try to memorize the train set. The model without pretraining(Orange) has some problems
converging in the start but catches up to the model just trained without majority voting(Green)

Figure 3.3: Traing and test loss for X to C, The m
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Precision tells us the proportion of predicted positive concepts that are actually positive
according to the annotated labels:

Precision =
true positives

true positives+ false positives

Recalls tell how many of the concepts the models were supposed to predict as true were
actually predicted as true:

Recall = true positives
true positives+ false negatives

The F1 score is meant to balance precision and Recall, thus giving us an idea of how well
a model predicts the relevant concepts.

F1 = 2 · precision · recall
precision+ recall

3.6 Salience score
I implemented a function for making saliency maps using the Captum package Simonyan
et al. (2014) in order to replicate the method used by Margeloiu et al. (2021) to illustrate
that concept bottleneck models do not focus on the part of the bird where the concept is.

Since I wanted an objective measure of explainability instead of just a few examples, I
developed a method to calculate a saliency score.

The score is based on the locations of each part annotated in the CUB dataset (Wah
et al., 2011), Parts are linked to concepts in such a way that one part can be the location
of multiple concepts; for example, both has bill color::white and has bill shape::dagger
belong to the beak location. Some concepts may also have multiple parts for example,
has wing color::blue belong to both Left Wing and Right Wing; a full list of concepts and
parts can be found in appendix A. Some parts only have one coordinate (such as only
one bill), while other parts have two coordinates (such as left wing and right wing). Thus,
let i, j be the index of each pixel and x,y be the coordinates associated with a part.

Calculating the saliency score starts by calculating a distance matrix M that calculates the
Manhattan distance to the nearest coordinate of a part.

Mi,j =

{
|i− y|+ |j − x| if one coordinate
minc (|i− yc|+ |j − xc|) if two coordinate

A normalization value is calculated as the mean of M, where N is the total amount of
pixels.

m =

∑
i,j Mi,j

N

let S be a normalized saliency map such that the sum of all values is 1 generated based
on the gradient of a concept. ∑

i,j

Si,j = 1
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Figure 3.4: Visual example of how saliency score is calculated for the concept: has wing
patternmulticolored. Note that the part of the saliencymap that attends to the wing doesn’t
increase the score, while the part that attends to the background increases the score a
lot.

The final saliency score can then be calculated as Hadamard’s product of the distance
matrix and the saliency map and normalized using the normalization values.

score =

∑
i,j(M ◦ S)ij

m

A low saliency score indicates that the saliency map is concentrated around the annotated
parts. The ideal case is a saliency score of 0, which means that the model focuses solely
on the annotated pixels.

A saliency score of 1 corresponds to an evenly distributed saliency map, suggesting that
the model does not preferentially focus on any specific part.

A saliency score greater than 1 implies that the model’s attention is focused on regions
that are, on average, farther from the annotated parts.

The saliency score is highly dependent on the picture and annotation and can thus not be
used to compare pictures or tell how well a model performs on a picture; however, for two
models evaluated on the same picture, we should assume that the one with the lowest
saliency score is the most explainable model.

Only concepts with an annotated part were used to calculate the saliency score, while
concepts such as shape or size were ignored. The full list of concepts with a related part
can be found in appendix A
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4 Results Quantitative.
This Chapter is meant to provide a quantitative evaluation of what models are best in
both accuracy and explainability (Saliency score) when evaluated on the entire validation
dataset. This chapter also contains evaluations of the original models trained by Koh et al.
(2020) for comparison.

4.1 Majority voting VS no majority voting
A central claim in this thesis is that using majority voting is a shortcut that may improve
prediction but makes the model more unexplainable. To back this up, this section will test
the difference betweenmodels trained on amajority-voted dataset and non-majority-voted
data.

4.1.1 End classifier baseline
First, a baseline based on the C to Y classifier is established to see how well a class can
be predicted, assuming a perfect X to C classifier that predicts all concepts as labeled.
The model is trained like the C to Y classifier used for the independent model as described
in section 3.4 and evaluated using the true concepts from the validation set the results of
this can be seen in table 4.1.

Majority voted Non majority voted
accuracy 100% 37%

top 5 accuracy 100% 62%
Table 4.1: Results of a perceptron trained ether a majority voted dataset or a non-majority
voted dataset and then evaluated on the same type of dataset

This baseline also indicates the potential impact of performing interventions on all con-
cepts following the method proposed by Koh et al. (2020). It also tell us why accuracy
goes down when Shin et al. (2023) performs interventions on a model trained without
majority voting.

4.1.2 Test Results for Concept Bottleneck Models Trained with and
without Majority Voting

In this section, I present the test results for models trained with and without majority vot-
ing. Performance was evaluated using concept accuracy, precision, recall, and F1 score
on two validation sets: The validations set annotated (MV) in table 4.2 was subjected to
the majority voting and filtering process based on the train set as described in section
3.1.3. The validation annotated (non-MV) in the table 4.2 was not subjected to majority
voting and contained the original annotations; however, only the same 112 concepts left
after filtering were used for both datasets in order to ensure a fair comparison.
A saliency score was calculated as described in section 3.6 based on a vanilla saliency
map and the 112 concepts left after filtering.

The results can be found in table 4.2; the data shows that the models trained on majority-
voted data perform better than those trained without it on predicting the class label (Bird
prediction), especially for sequential and independent models.
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Method
Concept Prediction Metrics Class Saliency

ScoreValidation
Dataset

Performance Metrics Metrics

Accuracy Precision Recall F1 Final
Acc

Top 5
Acc

Joint
with MV

MV 0.9643 0.9219 0.9023 0.9120 0.7470 0.8997 0.7575Non-MV 0.8128 0.6001 0.5295 0.5626
Joint
without MV

MV 0.8827 0.7411 0.6570 0.6965 0.6857 0.9006 0.7814Non-MV 0.8242 0.6419 0.5129 0.5701
Sequential
with MV

MV 0.9533 0.8911 0.8799 0.8855 0.6446 0.7607 0.71968Non-MV 0.8108 0.5944 0.5291 0.5599
Sequential
without MV

MV 0.8714 0.7312 0.5890 0.6525 0.3795 0.6201 0.7097Non-MV 0.8222 0.6501 0.4721 0.5470
Independent
with MV

MV 0.9533 0.8911 0.8799 0.8855 0.6196 0.7273 0.71968Non-MV 0.8108 0.5944 0.5291 0.5599
Independent
without MV

MV 0.8714 0.7312 0.5890 0.6524 0.3309 0.6060 0.7098Non-MV 0.8222 0.6502 0.4721 0.5470
Standard - - - - - 0.7056 0.9099 -

Table 4.2: Result of models trained with majority voting and without majority voting, and
tested set both a majority-voted and non-majority voted validation set. MV indicates ma-
jority voting. Due to the filtering of concepts, the concept accuracy and saliency score
are only calculated for the 112 concepts left after filtering for all models. For the Saliency
Score, lower is better.

For concept prediction, models trained on a majority-voted training set performed signif-
icantly better than those not trained on a majority-voted training set when evaluated on
a majority-voted validation set. However, models trained without majority voting perform
better on the majority-voted validation set than they do on the original validation set. The
saliency score indicates that Sequential models may be more explainable than joint mod-
els but seem inconclusive regarding how majority voting impacts explainability.

4.2 Results of original models
Since the models trained by Koh et al. (2020) is available online, I downloaded 1 some
of their models in order to compare my results to the results. Only models with random
seed 1 were tested on my test set. The results of their models are in table 4.3, the method
used for testing the models is the same as the method in section 4.1.2, this also means
that the results of table 4.2 and 4.3 is comparable.

The results show that all models trained by Koh et al. (2020) perform better thanmine. This
difference is discussed in section 6.1 however, the original models have higher saliency
scores, indicating that they may be less explainable.

4.3 No pre-training and resize transformation
To address the criticism of using RandomResizedCrop and using pre-trained network
models trained Other variables include training the network without loading a pre-trained
checkpoint and training on a resize transformation instead of a RandomReziseChop trans-
formation. The results of those models can be seen in table 4.4. The results in this section
are validated on datasets with all 312 concepts, meaning that the dataset annotated MV in
table 4.4 is only majority voted but did not have the filtering step described in section 3.1.3,
the dataset annotated Non-MV is the original CUB Validation set. A saliency score was

1worksheets.codalab.org/worksheets/0x362911581fcd4e048ddfd84f47203fd2
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Method
Concept Prediction Metrics Class Saliency

ScoreValidation
Dataset

Performance Metrics Metrics

Accuracy Precision Recall F1 Final
Acc

Top 5
Acc

Joint
Model

MV 0.8588 0.7290 0.4953 0.5899 0.8305 0.9615 0.7957Non-MV 0.7892 0.5596 0.3428 0.4251
Sequential
Model

MV 0.9677 0.9405 0.8993 0.9194 0.7573 0.8832 0.8771Non-MV 0.8144 0.6065 0.5228 0.5615
Independent
Model

MV 0.9677 0.9405 0.8993 0.9194 0.7428 0.8745 0.8771Non-MV 0.8144 0.6065 0.5228 0.5615
Standard
Model

MV - - - - 0.8243 0.9553 -Non-MV - - - -

Table 4.3: Results of models downloaded from Codalab. MV indicates a majority-voted
test set, and Non-MV indicates a non-majority-voted test set. For the Saliency Score,
lower is better.

calculated as described in section 3.6 based on a vanilla saliency and all concepts with
annotated coordinates. Note that since saliency score and Concept prediction metrics
were calculated using different numbers of concepts, the results in table 4.2 and table 4.4
is not directly comparable, this is also why models trained without majority voting (but no
other intervention) is present in both table despite being the samemodel that is evaluated.
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Method
Concept Prediction Metrics Class Saliency

ScoreValidation
Dataset

Performance Metrics Metrics

Accuracy Precision Recall F1 Final
Acc

Top 5
Acc

Joint
without MV

MV 0.9508 0.7040 0.6561 0.6792 0.6857 0.9006 0.7772Non-MV 0.9169 0.6214 0.4547 0.5251
Joint
No pretraining

MV 0.9506 0.7012 0.6571 0.6785 0.6590 0.8828 0.7233Non-MV 0.9165 0.6181 0.4548 0.5240
Joint
Resize

MV 0.9422 0.6437 0.6082 0.6254 0.5167 0.7915 0.7113Non-MV 0.9124 0.5897 0.4375 0.5023
Sequential
without Majority

MV 0.9476 0.7065 0.5819 0.6382 0.3795 0.6201 0.7033Non-MV 0.9167 0.6357 0.4110 0.4993
Sequential
No pretraining

MV 0.9448 0.6960 0.5409 0.6087 0.34915 0.5635 0.7534Non-MV 0.9155 0.6340 0.3869 0.4805
Sequential
Resize

MV 0.9430 0.7275 0.4513 0.5571 0.1964 0.4418 0.6604Non-MV 0.9133 0.6455 0.3144 0.4229
Independent
without MV

MV 0.9476 0.7065 0.5819 0.6382 0.3309 0.6060 0.7033Non-MV 0.9167 0.6357 0.4110 0.4993
Independent
No Pretraining

MV 0.9448 0.6960 0.5409 0.6087 0.3288 0.5739 0.7534Non-MV 0.9155 0.6340 0.3869 0.4805
Independent
Resize

MV 0.9430 0.7275 0.4513 0.5571 0.1255 0.3101 0.6604Non-MV 0.9133 0.6455 0.3144 0.4229

Table 4.4: Results of models trained with resize transformation and without pretraining.
MV indicates a majority-voted test set, and Non-MV indicates a non-majority-voted test
set. For the Saliency Score, lower is better.
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5 Qualitative results
In this section, I select a few images and evaluate a few models on them. I also present
saliency maps and individual concept predictions. The purpose of the section is to demon-
strate examples of deceptive explainability and analyze how models use their concepts
to make predictions
The examples presented in this chapter are chosen to demonstrate some points and are
not necessarily representative of the entire dataset. A more representative evaluation
can be found in appendix A.3, where I present randomly chosen images classified by
randomly chosen models and present 3 randomly chosen saliency maps and 30 random
concept predictions for each image.

5.1 Effect on easy prediction
The first qualitative test involves an archetypical male Mallard (validation set ID 2463) The
image can be seen in figure 5.1. This example is chosen because it is so straightforward
that all models can predict the right class with good confidence. All concepts are also very
visible except the legs and belly.

In table 5.1, the true concepts for both the majority-voted and the original datasets and
the prediction made by the X to C models are listed for a few selected concepts. The first
thing worth noticing is that the models trained on the majority-voted dataset are extremely
confident in their prediction, with all concepts being either almost 1 or almost 0. The
model’s prediction also precisely matches the Majority-voted labels, strongly supporting
the hypothesis that the model first predicts the class and then maps the predictions to the
concepts. This is further supported by the model being willing to make predictions about
belly patterns as solid despite not being able to see the belly.

In table 5.2, the model is trained using a Resize transformation, and the model does not
use a pre-trained network. We see that both models are far less certain than the majority-
voted models. For the models trained on the non-majority-voted dataset, the predictions
are more balanced for cases where there may be doubt about the true label.

The saliency map for the X to C models used in sequential and independent training can
be seen in figure 5.1. The saliency maps were made by Noisetunnel with 50 samples and
0.2 std as described in section 2.5.1. The saliency score was calculated as described in
section 3.6. What is worth noticing is that in all models, the saliency does not focus on the
annotated spot. We also see that no matter what concept, the saliency maps produced by
a model seem very similar, indicating that the model is predicting the bird first. This also
matches the finding by Margeloiu et al. (2021) that concept bottleneck models don’t learn
as intended. While the model trained without majority voting arguably is a little better, it
does not seem to solve the problem of training without majority voting.
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With majority voting

Without majority voting

No pre-training and Without majority voting

Trined using Resize transformation and Without majority voting

Figure 5.1: Saliency maps for some selected concepts saliency map on image 2463.
The top row is for an X to C model (Sequential). The concept predicted is that it has
breast color: Brown, Wing color: white, and bill length: about the same as the head.
The prediction for all those concepts can be found in table 5.1. The red dot indicates the
annotated coordinate of the part associated with the concept.

Concept Bottleneck Models 29



Concept True Label Joint Model Sequential Model Distribution
Non-MV MV MV Non MV MV Non MV Non MV MV

wing color:
brown

T F 0.000 0.620 0.000 0.570 0.270 0.245

wing color: buff T F 0.000 0.450 0.000 0.470 0.182 0.130
upperparts
color: brown

F T 1.000 0.640 1.000 0.670 0.243 0.230

upperparts
color: black

T F 0.000 0.540 0.000 0.630 0.391 0.410

breast pattern:
solid

F T 1.000 0.490 1.000 0.380 0.548 0.645

breast pattern:
striped

T F 0.000 0.010 0.000 0.050 0.117 0.075

back color:
white

T F 0.000 0.680 0.000 0.280 0.154 0.120

back color: buff T F 0.000 0.530 0.000 0.520 0.146 0.110
upper tail color:
white

T F 0.000 0.230 0.000 0.580 0.124 0.120

eye color: black F T 1.000 0.980 1.000 0.960 0.837 0.960
forehead color:
blue

T F 0.000 0.010 0.000 0.010 0.051 0.050

under tail color:
white

F T 1.000 0.740 1.000 0.650 0.179 0.160

back pattern:
multi-colored

F T 1.000 0.740 1.000 0.410 0.195 0.070

belly pattern:
solid

F T 1.000 0.170 1.000 0.350 0.573 0.745

primary color:
white

T F 0.000 0.670 0.000 0.550 0.290 0.205

primary color:
buff

T F 0.000 0.130 0.000 0.190 0.192 0.090

crown color:
blue

T F 0.000 0.020 0.000 0.050 0.055 0.050

Table 5.1: Some selected concepts prediction for majority voted and non-majority voted
models on image 2463 (see the image in figure 5.1) concepts are selected based on the
place where the annotated label disagree with the majority label. T and F stand for True
False or a label of 0 and 1. NoN-MV is the non-majority-voted dataset, and MV is the
voted dataset for true labels and label distribution, while for models, MV and NoN-MV
refer to whether a model was trained on a majority-voted dataset or not. The distribution
is how big a percentage of the data is true for each concept(baseline for a model that
always guesses true)
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Concept True Label Joint Model Sequential Model Distribution
Original Majority Resize NoPretraining Resize NoPretraining

has wing color:
brown

True False 0.22 0.70 0.15 0.68 0.27

has wing color:
buff

True False 0.26 0.59 0.13 0.60 0.18

has upperparts
color: brown

False True 0.25 0.72 0.13 0.63 0.24

has upperparts
color: black

True False 0.33 0.63 0.27 0.74 0.39

has breast pat-
tern: solid

False True 0.42 0.37 0.57 0.49 0.55

has breast pat-
tern: striped

True False 0.28 0.11 0.07 0.06 0.12

has back color:
white

True False 0.39 0.37 0.16 0.82 0.15

has back color:
buff

True False 0.25 0.58 0.08 0.58 0.15

has tail shape:
fan-shaped tail

True False 0.21 0.26 0.16 0.13 0.08

has tail shape:
squared tail

False True 0.33 0.39 0.11 0.52 0.09

has upper tail
color: white

True False 0.31 0.29 0.12 0.59 0.12

has eye color:
brown

True False 0.03 0.01 0.04 0.00 0.03

has eye color:
black

False True 0.86 0.80 0.83 0.94 0.84

has forehead
color: blue

True False 0.52 0.11 0.10 0.02 0.05

has under tail
color: white

False True 0.49 0.52 0.25 0.76 0.18

has nape color:
blue

True False 0.58 0.14 0.09 0.07 0.05

has nape color:
green

True False 0.81 0.60 0.13 0.78 0.01

has back
pattern: multi-
colored

False True 0.48 0.84 0.32 0.80 0.19

has belly pat-
tern: solid

False True 0.28 0.36 0.56 0.34 0.57

has primary
color: white

True False 0.30 0.47 0.39 0.66 0.29

has primary
color: buff

True False 0.13 0.20 0.13 0.15 0.19

has leg color:
orange

False True 0.40 0.63 0.13 0.77 0.08

has crown color:
blue

True False 0.62 0.21 0.10 0.17 0.05

Table 5.2: Some selected concepts prediction for models trained with resize transfor-
mation or without pertaining on image 2463 (see the image in figure 5.1) concepts are
selected based on the place where the annotated label disagree with the majority label.
T and F stand for True False or a label of 0 and 1. The distribution is the percentage of
the data that is true for each concept.
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5.2 Effect on prediction on Manipulated image

In this section, a heavily manipulated image of a Mallard (validation set ID 2463)(Same
image as in section 5.1 on a heavily manipulated image. What is done is that most of the
image was cropped out and replaced with a black background, and the eyes were colors
yellow, the results of this manipulation can be seen in figure: 5.2. After the manipulation,
all models still predict the correct class except the Sequential Resized model that predicts
the class to be a Rufous Hummingbird. A few selected concepts predicted by each model
can be found in table 5.3 and 5.4. Here, the models trained with majority voting again
overconfidently predict concepts that have been deleted; however, the models trained
without majority voting also predict concepts that have been deleted. We also see that
all models still predict the Eye color to be black instead of red; however, 84% birds have
black eyes, indicating that none of the models have learn this concept but instead just
guess on the baseline.

Figure 5.2: The manipulated image of a Mallard and saliency maps for a model trained
without majority voted concepts.

Concept True Label Joint Model Sequential Model Distribution
Non-MV MV MV Non MV MV Non MV Non MV MV

has back
pattern: multi-
colored

False True 1.00 0.47 1.00 0.39 0.19 0.07

has wing color:
white

True True 1.00 0.60 1.00 0.36 0.26 0.20

has breast pat-
tern: solid

False True 1.00 0.52 1.00 0.43 0.55 0.65

has wing
pattern: multi-
colored

True True 1.00 0.64 1.00 0.62 0.30 0.22

has eye color:
black

False True 1.00 0.88 1.00 0.92 0.84 0.96

has under tail
color: white

False True 1.00 0.40 0.99 0.38 0.18 0.16

Table 5.3: Some selected concept predictions for models trained with and without majority
voting on a manipulated image in figure 5.2. MV stands for majority voting.
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Concept True Label Joint Model Sequential Model Distribution
Original Majority Resize NoPretraining Resize NoPretraining

has back
pattern: multi-
colored

False True 0.46 0.47 0.18 0.50 0.19

has wing color:
white

True True 0.34 0.18 0.14 0.40 0.26

has breast pat-
tern: solid

False True 0.44 0.51 0.49 0.43 0.55

has wing
pattern: multi-
colored

True True 0.51 0.62 0.23 0.62 0.30

has eye color:
black

False True 0.77 0.72 0.84 0.84 0.84

has eye color:
red

False False 0.04 0.05 0.02 0.01 0.02

has nape
color:green

True False 0.54 0.47 0.05 0.76 0.01

Table 5.4: Some selected concept prediction for models trained with resize transformation
or without pertaining on a manipulated image in figure. 5.2

5.3 Learning wrong concepts

The second qualitative test shows a mallard whose bill is being chopped off in the centre
chop preprocessing step for the validation set, and the picture can be seen in figure 5.3.
Yet, in table 5.5, both a joint and an independent model trained without majority voting will
predict the bill shape to be spatulate with fairly high certainty. furthermore, we see that the
model is almost just as certain of other concepts related to a Mallard, such as duck-like
shapes, supporting the hypothesis that even models trained without majority voting still
make the class prediction before the concept prediction. However, what counts against
this hypothesis is that only the joint model predicts the bill colour to be yellow (with low
certainty), and both models fail to predict the leg colour orange despite the leg colour
being just as important for classifying Mallards according to the weights of the C to Y
model. Another theory could be that only water birds have a spatial-shaped bill, and thus,
this concept indicates the presence of water instead of the actual bill shape. The saliency
maps in figure 5.3 may partially support this theory, but fundamentally, these are just
speculations that indicate that it is next to impossible to explain why the model predicted
this concept or how much leakage is in this concept, bringing the explainability of concept
bottleneck models into question.
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Joint model

Concept model

Figure 5.3: Mallard, whose bill was cut out of the image due to center cropping on the test
set. The picture ID is 2455. The top row is saliency maps, the joint model trained without
majority voting, and the bottom row is the concept model (X to C model) trained without
majority voting. The saliency maps are made using a noise tunnel with 50 samples and a
0.2 standard deviation. The concepts chosen have bill shape spatulate, leg color orange,
and shape duck-like. The prediction made by those models can be seen in table 5.5.

Concept True Label Joint Independent Distribution
Non-MV MV Prediction Weight Prediction Weight Non MV MV

bill shape: spat-
ulate

T T 0.960 1.391 0.630 7 0.040 0.020

bill color: yellow T T 0.510 1.190 0.170 6 0.057 0.015
bill length:
same as head

T T 0.680 0.337 0.450 -1 0.362 0.340

forehead color:
green

T F 0.250 0.700 0.060 1 0.009 0.000

size: medium (9
- 16 in)

T T 0.900 0.654 0.630 0 0.196 0.185

shape: duck-
like

T T 0.930 1.096 0.690 2 0.061 0.050

leg color: or-
ange

F T 0.330 1.112 0.110 10 0.083 0.045

breast color:
brown

T T 0.440 0.736 0.370 8 0.114 0.065

Table 5.5: Table of results from selected concepts predicted on the mallard seen in figure
5.1. The model tested was the joint and independent model trained without majority voting
and tested on all 312 concepts. The prediction is what the X to C part of the model
predicts. The weights are the weights of the C to Y model from the concepts to the true
class (Mallard), telling how important the concept is for the model in predicting the true
class. The true label is True or False, with Non-MV being the annotated label and MV
being the label after majority voting.
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5.4 Misclassification for female bird
A major critique of majority voting is that it sets the true concepts for female birds to the
true concepts of male birds (if male birds are the majority). In this section, two examples
of when this happens are investigated. The first example is a female painted bunting as
seen in figure 5.4b, table 5.7 shows how different models misclassify this Painted Bunting
as an Orange Crowned Warbler.

(a) Painted Bunting male (b) Painted Bunting female (c) Orrange Crowned Warbler

Figure 5.4: Example of howmodels can be confused by concepts when the female painted
Bunting looks more like an Orange Crowned Warbler than the male painted bunting that
makes up the majority of the dataset. The Painted Bunting in the middle is the bird clas-
sified in this section.

Prediction Joint MV Joint No MV Sequential MV Sequential No MV
Painted Bunting 0.0101 0.0108 4 · 10−9 10−6

Orange Crowned Warbler 0.0101 0.0108 0.99 0.86
Table 5.6: Model prediction of Painted Bunting (True class) and Orange CrownedWarbler
(Wrong class)

Table 5.7 shows how each model is predicting concepts for image 391 seen in 5.4b. All
models predict that the bird has a yellow breast and yellow belly, even though this is false
according to the majority voting, however, the Joint model trained on the majority-voted
dataset gives at least some probability that the head and crown may be blue, which can
be interpreted as an example of leakage.
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Concept True
Label

Painted
Bunting

Orrange
Warbler

Joint Model Sequential Model Distribution
MV Non MV MV Non MV Non MV MV

has bill
shape
all-purpose

False False True 0.570 0.620 0.940 0.690 0.392 0.405

has bill
shape cone

True True False 0.720 0.230 0.020 0.180 0.261 0.245

has breast
color yellow

True False True 0.890 0.790 1.000 0.830 0.137 0.145

has fore-
head color
blue

False True False 0.400 0.000 0.010 0.000 0.051 0.050

has belly
color yellow

True False True 0.900 0.620 1.000 0.770 0.144 0.145

has back
pattern
solid

False False True 0.010 0.450 0.630 0.310 0.365 0.495

has back
pattern
multi-
colored

True True False 1.000 0.320 0.400 0.250 0.195 0.070

has tail
pattern
multi-
colored

False False True 0.020 0.200 0.590 0.260 0.228 0.130

has leg
color grey

True True False 0.780 0.290 0.050 0.310 0.256 0.225

has crown
color blue

False True False 0.400 0.010 0.010 0.000 0.055 0.050

has wing
pattern
multi-
colored

True True False 1.000 0.270 0.360 0.330 0.297 0.220

Table 5.7: Selected concept predicted for image 391 by different models. The Painted
Bunting column is the majority-voted label of a Painted Bunting, and the Orange Warbler
column is the majority-voted concept for Orange CrownedWarbler; concepts are selected
where the two columns are not the same. MV and NoN-MV indicate that a model was
trained on a majority-voted dataset.
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6 Discussion
6.1 Lack of accuracy
The biggest frustration working on this thesis is that I was unable to replicate the accuracy
Koh et al. achieved on the class predictions, with my models consistently performing 10%
worse than the original models on the same task (training with majority voting).

The choice of hyperparameter is probably the most influential factor in this effect. My
hyperparameters were primarily chosen after what worked on the Non-majority-voted
dataset trained using Resized instead of RandomResizedCrop. The hyperparameter I
chose thus makes all models converge even though some are not very good, especially
training with resized images, which proved very challenging since the model always over-
fitted without sufficient data augmentation.

Furthermore, Koh et al. (2020) makes a hyperparameter search for each type of model;
this was not realistic for me to do since I had more models and less access to GPU
resources. Thus, I ended up finding one setting for all models, this may not have been
the optimal strategy, for example, when tested on the test set using Stochastic gradient
descent seemed to work better than ADAM on the majority voted models but worse on
non-majority voted models, furthermore in section 3.3.1 I show that performance of the
Majority voted models can be boosted using concept weighting and may even give better
results than the original paper if that was the goal of the thesis.

6.2 Consequences of Majority voting
The C to Y model baseline in 4.1 suggests that Majority-voted concepts are a shortcut
that improves accuracy by creating an artificially easy classification problem for the C to
Y classifier which is why the baseline accuracy for the majority-voted dataset is 100%
For joint models, the loss of accuracy due to not using majority voting is not that bad (es-
pecially for top-five accuracy). The joint model also performs a lot better than the baseline
of 37% accuracy baseline for Majority models, indicating a lot of leakages; this would also
support the finding by Shin et al. (2023) that performing an intervention on Joint models
trained without majority voting would decrease accuracy.

For sequential and independent models, not doing majority voting brings a model down
to the baseline of an independent model on the true concepts of 37% accuracy.

Interestingly, even models trained without majority voting predict the majority-voted con-
cept better than the original concepts when evaluated on amajority-voted and non-majority-
voted validation set, indicating that all models perform some form of internal majority vot-
ing or noise reduction.

A problem with the dataset is that a model in the concepts has too much noise to be truly
useful for a concept bottleneck model, but by doing majority voting, we are both removing
the annotation noise and the real-world noise (often, the concepts are not visible). In the
further work section 6.7, I discuss other preprocessing steps that may reduce and make
the concepts better for predicting without giving more information than what is visible in
the image.
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6.3 Consquences of pre-training
Not using a pre-trained network makes the model a little less accurate in all prediction
matrices but not much compared to the model trained with a pre-trained network. In the
training section 3.4, the model without pre-training takes longer to converge but ends up
around the same place as the other model trained on a majority-voted dataset and pre-
trained on Imagenet.
The saliency score is better for the joint models and worse for the sequential and inde-
pendent ones; thus, while there may be theoretical arguments against using a pre-trained
network, I don’t see any data that suggests that not using a pre-trained network makes
the model more explainable.

6.4 Consequences of RandomResizeCrop
While the slightly lower saliency score may indicate that a model train without Random-
ResizeCrop may be more explainable than the model trained on a Resized image, the
Resizede models also performed far worse than the non-Resized models. Furthermore,
the loss curves in section 3.4 show that it is hard to train a model without overfitting in the
current training setup.
This also means that it is hard to tell if the explanations are deceptive or just badly pre-
dicted, making it hard to make any conclusion on the explainability of models trained
without RandomResizeCrop.

6.5 Soft labels
My results indicate that a joint model is better than a standard model when trained with
majority-voted data. While Koh et al. (2020) don’t claim this, it is worth noticing that they
include a figure that indicates that for the right value of lambda, Joint models outperform
standard models as seen in figure 6.1. This goes against the theoretical argument that
concept bottleneck models have trade-offs between being explainable or accurate.

Figure 6.1: Figure from Koh et al. (2020) telling the concept error versus the task error for
different values of λ note that for λ = 0.001 concept task error is lower than the task error
for the standard model

I would explain this phenomenon by pointing out that a concept layer can be seen as a
soft label. Soft labels are a way to increase a model’s robustness and accuracy by using
labels given as a percentage instead of binary. A way to make a soft label is to give the
label the probability of how many annotators believe the label to be of that class if multiple
annotators are used (Peterson et al., 2019) or a soft label can be generated by asking
an annotator how certain they are (Nguyen et al., 2014). ? also suggests a version of
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soft labels called label smoothing, where adding a bit of random noise to the labels can
improve accuracy.
For concept bottleneck models, the concept vector is a soft label, and the similarity be-
tween two concept vectors is a probability.

For example, a standard model would get the same loss for misclassifying an American
crow as a Mallard as it would get for misclassifying it as a fish crow. However, for a model
that includes the majority of concepts in its loss function, the fish crow misclassification
would only get 2 concepts wrong. In comparison, the mallard misclassification would get
28 concepts wrong, leading to the mallard misclassification getting a much higher loss.
Thus, by training on an American crow, the model can learn features that may help it
classify all crow-like birds.

Thus, the concept layer acts as soft labels, making the model more robust. This would
explain why concept-based models perform better when validated on a dataset with a
shifting background or when trained on less data, as demonstrated by Koh et al. (2020).

6.6 Fairness of Concept bottleneck models
In this section, I discuss the fairness of CBMs. In their discussion Shin et al. (2023) points
out that majority voting discriminates against minorities since concepts unique to a minor-
ity inside a class are removed, for example, in the CUB dataset, male birds are often more
colourful than females making them more favoured by photographers and thus overrep-
resented in the dataset, this means that female birds are often annotated wrong.
In this thesis, I think there is some evidence that even without majority voting, models still
discriminate against female birds. The first way a model may discriminate is by guessing
the correct bird but then telling the concepts related to the male bird. However, I did not
find any evidence for this. The second way a model may discriminate is by classifying the
female bird as a different type of bird and then coming up with the concepts to justify this
decision as seen in section 5.4 where the models classify the female Painted Bunting as
an Orange Warbler and then say that the Bunting has all-purpose bill shape of the warbler
despite this being false.
In other hypothetical applications of concept bottleneck models, their ability to appear ex-
plainable may also be used to justify discrimination. A thought example could be a hiring
algorithm that maps a CV stating that the applicant was a member of the Boy Scouts to
the concept of leadership experience. In contrast, an otherwise equal applicant who was
a member of the Girl Scouts would get a lower leadership score, leading to the company
hiring the male applicant. If the woman then seeks insight into why she wasn’t hired, the
company can excuse itself by stating that she didn’t have the leadership experience they
were looking for, thus avoiding a lawsuit despite discriminating against females.

Another example could be a member of a minority group receiving the wrong medical
treatment as a result of a CBM misdiagnosis. If the model is a black box, the patient
would have a good legal case against the hospital. However, if the patient receives 310
predictions of Latin-named concepts that all may and may not contain racial bias, it would
be much harder (and more expensive) for the patient to prove which concepts were pre-
dicted wrong.

6.7 Future work
6.7.0.1 An explainable model on the CUB dataset
While none of the models I trained seem to be truthfully explainable or very accurate, it
may still be possible to train a concept bottleneck model on the CUB dataset (Wah et al.,
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2011) by using some of the other features of the CUB dataset.
One feature is that the annotator was asked to state how certain they were in their con-
cepts; if this certainty was turned into a soft label, it should be possible to make a concept
space that is better for predicting birds.
Another problem is that RandomResizeCrop is the correct way to train an Inception net-
work (PyTorch Team, 2015)(Cui et al., 2018) and without it the model overfits a lot, the
easiest way to get around this would be to use a different CNN to predict concepts, ResNet
seems most obvious as it is used by Koh et al. (2020) on the OAI dataset. The coordi-
nates of each concept could also be used to make sure that the model is only trained to
predict the concept actually present in the cropped image; this may allow RandomRe-
sizedCropping to learn all concept representations faithfully. This should have a similar
effect as masking the concepts as shown by Lin et al. (2022) and discussed in section
1.4.1. The provided mask of the entire bird by the CUB dataset may also be used to avoid
model shortcuts based on the background. A perceiving model could also be used to
mask concepts.

Using a more complicated C-to-Y model than a perception may also improve the accuracy
of CBMs. I didmake amini experiment on the test set where I set up a small neural network
(two layers of each 200 neurons) following the same methods as Shin et al. (2023) on the
baseline prediction in section 4.1.1 and only got 42% indicating an improvement over the
37% baseline provided by the perceptron but not much.
6.7.0.2 Interpretability score
What seems to be a problem across the literature on concept bottleneck models is that
there is no objective measurement of how explainable a concept bottleneck model is. I
attempt to solve this by implementing a distance-based saliency score, and Huang et al.
(2024) makes a score based on a bounding box and saliency map.
Both those ideas would probably need more development in order to be a reliable mea-
surement; for example, for a saliency score, it would be worth establishing if a Euclidean
distance would be better than a Manhattan distance, using a Grad Cam saliency (Sel-
varaju et al., 2019) map may also give better results.
6.7.0.3 Simulated data
A big problem with real-life datasets is the concept noise; this means that we can not be
sure if the label is wrong when evaluating models quantitatively; simulating data thus may
be a way to test the effect of majority voting, especially to detect if models learn concept
representation or class representation.
Shin et al. (2023) provides an example of simulating a concept annotated dataset ex-
ploring adding noise and how a model performs if relevant concepts are not annotated.
This could further be expanded upon by simulating a dataset with different correlations
between x, c, and y to show when/ if a CBM would predict a concept not present in x.
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7 Conclusion
In this thesis, I present evidence for Hypothesis 1, which states that the model predicts
class instead of concept. One example of this can be section 5.1 where I show that if a
model is certain of the final label it is overconfident in predicting concepts I also show that
models trained with majority voting will predict the majority voted concepts even if they
are not visible or the concept (as annotated) is different than the majority voted.

I confirm the first of my criticisms that majority voting makes the model unexplainable by
predicting concepts with high certainty even when they are not present in the data.

When majority voting is not applied in the training models, the predictions seem less
certain but still predict concepts that are not present in the data.

My criticism of using a pre-trained model remains theoretical since I could not find any evi-
dence that a model trained without pre-training is any more explainable than an otherwise
equal model that is pre-trained on ImageNet.

I try to address the problem of using RandomResizeCrop and find some evidence that a
model trained using Resize instead is more explainable; however, training amodel without
RandomResizeCrop makes the model overfit easily in the current setup and perform so
poorly that it is hard to conclude anything.

Overall, I show that in some cases concept bottleneck models don’t learn as intended
but instead learn a class representation and use that to predict concepts. This makes
their explainability deceptive since concepts are just used to justify a prediction made by
a black box model.
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A List of parts and concepts
Table of all concepts and what part they belong to; concepts in bold are concepts still
present after the filter step, while concepts in italics are not present in the dataset after
majority voting and filtering.

Part Attributes / Concept name
Back has_back_color::blue

has_back_color::brown
has_back_color::iridescent
has_back_color::purple
has_back_color::rufous
has_back_color::grey
has_back_color::yellow
has_back_color::olive
has_back_color::green
has_back_color::pink
has_back_color::orange
has_back_color::black
has_back_color::white
has_back_color::red
has_back_color::buff
has_back_pattern::solid
has_back_pattern::spotted
has_back_pattern::striped
has_back_pattern::multi-colored

Bill has_bill_color::blue
has_bill_color::brown
has_bill_color::iridescent
has_bill_color::purple
has_bill_color::rufous
has_bill_color::grey
has_bill_color::yellow
has_bill_color::olive
has_bill_color::green
has_bill_color::pink
has_bill_color::orange
has_bill_color::black
has_bill_color::white
has_bill_color::red
has_bill_color::buff
has_bill_shape::curved_(up_or_down)
has_bill_shape::dagger
has_bill_shape::hooked
has_bill_shape::needle
has_bill_shape::hooked_seabird
has_bill_shape::spatulate
has_bill_shape::all-purpose
has_bill_shape::cone
has_bill_shape::specialized
has_bill_length::about_the_same_as_head
has_bill_length::longer_than_head
has_bill_length::shorter_than_head

Belly has_belly_color::blue
has_belly_color::brown
has_belly_color::iridescent
has_belly_color::purple
has_belly_color::rufous
has_belly_color::grey
has_belly_color::yellow
has_belly_color::olive
has_belly_color::green
has_belly_color::pink
has_belly_color::orange
has_belly_color::black
has_belly_color::white
has_belly_color::red
has_belly_color::buff
has_belly_pattern::solid
has_belly_pattern::spotted
has_belly_pattern::striped
has_belly_pattern::multi-colored

Breast has_breast_color::brown
has_breast_color::grey
has_breast_color::yellow
has_breast_color::black
has_breast_color::white
has_breast_color::buff
has_breast_pattern::solid
has_breast_pattern::spotted
has_breast_pattern::striped
has_breast_pattern::multi-colored

Crown has_crown_color::blue
has_crown_color::brown
has_crown_color::grey
has_crown_color::yellow
has_crown_color::black
has_crown_color::white
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Forehead has_forehead_color::blue
has_forehead_color::brown
has_forehead_color::grey
has_forehead_color::yellow
has_forehead_color::black
has_forehead_color::white

Left and Right Eye has_eye_color::blue
has_eye_color::brown
has_eye_color::purple
has_eye_color::rufous
has_eye_color::grey
has_eye_color::yellow
has_eye_color::olive
has_eye_color::green
has_eye_color::pink
has_eye_color::orange
has_eye_color::black
has_eye_color::white
has_eye_color::red
has_eye_color::buff

Left and Right Leg has_leg_color::blue
has_leg_color::brown
has_leg_color::iridescent
has_leg_color::purple
has_leg_color::rufous
has_leg_color::grey
has_leg_color::yellow
has_leg_color::olive
has_leg_color::green
has_leg_color::pink
has_leg_color::orange
has_leg_color::black
has_leg_color::white
has_leg_color::red
has_leg_color::buff

Left and Right Wing has_wing_color::blue
has_wing_color::brown
has_wing_color::iridescent
has_wing_color::purple
has_wing_color::rufous
has_wing_color::grey
has_wing_color::yellow
has_wing_color::olive
has_wing_color::green
has_wing_color::pink
has_wing_color::orange
has_wing_color::black
has_wing_color::white
has_wing_color::red
has_wing_color::buff
has_wing_pattern::solid
has_wing_pattern::spotted
has_wing_pattern::striped
has_wing_pattern::multi-colored
has_wing_shape::rounded-wings
has_wing_shape::pointed-wings
has_wing_shape::broad-wings
has_wing_shape::tapered-wings
has_wing_shape::long-wings

Nape has_nape_color::brown
has_nape_color::grey
has_nape_color::yellow
has_nape_color::black
has_nape_color::white
has_nape_color::buff

Tail has_upper_tail_color::blue
has_upper_tail_color::brown
has_upper_tail_color::iridescent
has_upper_tail_color::purple
has_upper_tail_color::rufous
has_upper_tail_color::grey
has_upper_tail_color::yellow
has_upper_tail_color::olive
has_upper_tail_color::green
has_upper_tail_color::pink
has_upper_tail_color::orange
has_upper_tail_color::black
has_upper_tail_color::white
has_upper_tail_color::red
has_upper_tail_color::buff
has_under_tail_color::blue
has_under_tail_color::brown
has_under_tail_color::iridescent
has_under_tail_color::purple
has_under_tail_color::rufous
has_under_tail_color::grey
has_under_tail_color::yellow
has_under_tail_color::olive
has_under_tail_color::green
has_under_tail_color::pink
has_under_tail_color::orange
has_under_tail_color::black
has_under_tail_color::white
has_under_tail_color::red
has_under_tail_color::buff
has_tail_pattern::solid
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has_tail_pattern::spotted
has_tail_pattern::striped
has_tail_pattern::multi-colored
has_tail_shape::forked_tail
has_tail_shape::notched_tail
has_tail_shape::rounded_tail
has_tail_shape::fan-shaped_tail
has_tail_shape::pointed_tail
has_tail_shape::squared_tail

Throat has_throat_color::blue
has_throat_color::brown
has_throat_color::grey
has_throat_color::yellow
has_throat_color::black
has_throat_color::white
has_throat_color::buff

No Specific Part has_size::large_(16_-_32_in)
has_size::small_(5_-_9_in)
has_size::very_large_(32_-_72_in)
has_size::medium_(9_-_16_in)
has_size::very_small_(3_-_5_in)
has_shape::upright-perching_water-like
has_shape::chicken-like-marsh
has_shape::long-legged-like
has_shape::duck-like
has_shape::owl-like
has_shape::gull-like
has_shape::hummingbird-like
has_shape::pigeon-like
has_shape::tree-clinging-like
has_shape::hawk-like
has_shape::sandpiper-like
has_shape::upland-ground-like
has_shape::swallow-like
has_shape::perching-like
has_head_pattern::spotted
has_head_pattern::malar
has_head_pattern::crested
has_head_pattern::masked
has_head_pattern::unique_pattern
has_head_pattern::eyebrow
has_head_pattern::eyering
has_head_pattern::plain
has_head_pattern::eyeline
has_head_pattern::striped
has_head_pattern::capped
has_primary_color::blue
has_primary_color::brown
has_primary_color::iridescent
has_primary_color::purple
has_primary_color::rufous
has_primary_color::grey
has_primary_color::yellow
has_primary_color::olive
has_primary_color::green
has_primary_color::pink
has_primary_color::orange
has_primary_color::black
has_primary_color::white
has_primary_color::red
has_primary_color::buff
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A.1 Selceted Confusions matrix

Figure A.1: Confision matrix of the independent Majority voted model. The number at the
right side is within family accuracy, fx as all the Warblers that were correctly classified as
a Warbler only 51% was classified as the correct type of Warbler.
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Figure A.2: Confusion matrix of the Joint Majority voted model. The number at the right
side is within family accuracy, fx as all the Warblers that were correctly classified as a
Warbler only 51% was classified as the correct type of Warbler.
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Figure A.3: Confision matrix of the Sequential Majority voted model. The number at the
right side is within family accuracy, fx as all the Warblers that were correctly classified as
a Warbler only 51% was classified as the correct type of Warbler.
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Figure A.4: Confusion matrix of the Joint NoNMajority voted model. The number at the
right side is within family accuracy, fx as all the Warblers that were correctly classified as
a Warbler only 51% was classified as the correct type of Warbler.
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Figure A.5: Confusion matrix of the Sequential NoN-Majority voted model. The number at
the right side is within family accuracy, fx as all the Warblers that were correctly classified
as a Warbler only 51% was classified as the correct type of Warbler.
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Figure A.6: Confusion matrix of the Sequential model trained without pretending and on
a Non-Majority voted dataset. The number at the right side is within family accuracy, fx
as all the Warblers that were correctly classified as a Warbler only 51% was classified as
the correct type of Warbler.
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Figure A.7: Confusion matrix of the Sequential model trained on Resized transformation
and without majority voting. The number at the right side is within family accuracy, fx as
all the Warblers that were correctly classified as a Warbler only 51% was classified as the
correct type of Warbler.
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Figure A.8: Confusion matrix of the Independent model trained on Resized transformation
and without majority voting. The number at the right side is within family accuracy, fx as
all the Warblers that were correctly classified as a Warbler only 51% was classified as the
correct type of Warbler.
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Figure A.9: Confision matrix of the baseline C to Y model evaluated on the anoteted
concepts. The number at the right side is within family accuracy, fx as all the Warblers
that were correctly classified as a Warbler only 51% was classified as the correct type of
Warbler. It shows that the concepts are not annotated well enough to show the difference
in classifying some families of birds while others can be classified correctly using the true
concepts
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A.2 Examples of problematic explainability

Figure A.10: Figure by Oikarinen et al. (2023): Example of concept made by ChatGPT
on an imagenet dataset note that the most activated concept is just a synonym for the
predicted class.
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Figure A.11: This image was in the appendix of Ghosh et al. (2023) claiming to be an
explainable model based on boolean logic; what is worth noticing is that defining concept
for Expert 4 to classify an image of a horse is that it is smelly. This is an artifact of train-
ing a concept bottleneck model on the Animals with Attributes 2 dataset, which contains
concepts not present in the image.
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Figure A.12: Figure by Oikarinen et al. (2023) showing labels generated by ChatGPT on
the CUB dataset, while the labels appear more descriptive, we still see that the model is
willing to make predictions about feet and underwings despite those concepts not being
present.
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A.3 Random Examples

Figure A.13
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Figure A.14
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Figure A.15
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Figure A.16
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Figure A.17
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Figure A.18
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Figure A.19
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Figure A.20
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